A molecular catalyst for water oxidation that binds to metal oxide surfaces
نویسندگان
چکیده
منابع مشابه
A molecular catalyst for water oxidation that binds to metal oxide surfaces
Molecular catalysts are known for their high activity and tunability, but their solubility and limited stability often restrict their use in practical applications. Here we describe how a molecular iridium catalyst for water oxidation directly and robustly binds to oxide surfaces without the need for any external stimulus or additional linking groups. On conductive electrode surfaces, this hete...
متن کاملA molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II.
Across chemical disciplines, an interest in developing artificial water splitting to O(2) and H(2), driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the ...
متن کاملFacile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation.
Nitrogen (5.61 at%) doped reduced graphene oxide synthesized via a facile method was demonstrated as a superior metal-free catalyst for activation of peroxymonosulfate. Codoping with boron would further enhance the catalytic activity and the stability, providing a promising green material for environmental remediation.
متن کاملWater oxidation: a robust all-inorganic catalyst.
Water is the most abundant molecular compound on Earth: it is omnipresent and essential for life. Water is a very stable compound because of its high formation enthalpy of 286 kJmol , and thus the splitting of water into dihydrogen and dioxygen is a high-energy process—the thermal splitting of water requires temperatures above 2500 8C, and is still incomplete. Although the electrochemical split...
متن کاملPhotoelectrochemical Behavior of a Molecular Ru-Based Water-Oxidation Catalyst Bound to TiO2-Protected Si Photoanodes.
A hybrid photoanode based on a molecular water oxidation precatalyst was prepared from TiO2-protected n- or p+-Si coated with multiwalled carbon nanotubes (CNT) and the ruthenium-based water oxidation precatalyst [RuIV(tda)(py-pyr)2(O)], 1(O) (tda2- is [2,2':6',2″-terpyridine]-6,6″-dicarboxylato and py-pir is 4-(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide). The Ru complex was immobilized by π-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2015
ISSN: 2041-1723
DOI: 10.1038/ncomms7469